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We present a novel recurrent neural network (RNN)–based model that
combines the remembering ability of unitary evolution RNNs with the
ability of gated RNNs to effectively forget redundant or irrelevant infor-
mation in its memory. We achieve this by extending restricted orthogonal
evolution RNNs with a gating mechanism similar to gated recurrent unit
RNNs with a reset gate and an update gate. Our model is able to outper-
form long short-term memory, gated recurrent units, and vanilla unitary
or orthogonal RNNs on several long-term-dependency benchmark tasks.
We empirically show that both orthogonal and unitary RNNs lack the
ability to forget. This ability plays an important role in RNNs. We pro-
vide competitive results along with an analysis of our model on many
natural sequential tasks, including question answering, speech spec-
trum prediction, character-level language modeling, and synthetic tasks
that involve long-term dependencies such as algorithmic, denoising, and
copying tasks.
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1 Introduction

Recurrent neural networks (RNNs) with gating units—such as long short-
term memory (LSTMs) (Hochreiter & Schmidhuber, 1997; Gers, 2001) and
gated recurrent units (GRUs; Cho, Van Merriënboer, Gulcehre et al., 2014)—
have led to rapid progress in different areas of machine learning, such
as language modeling (Graves, Wayne, & Danihelka, 2014), neural ma-
chine translation (Cho et al., 2014; Sutskever, Vinyals, & Le, 2014), and
speech recognition (Chan, Jaitly, Le, & Vinyals, 2016; Chorowski, Bahdanau,
Serdyuk, Cho, & Bengio, 2015). These studies have proved the importance
of gating units for RNNs.

The main advantage of using these gated units in RNNs is primarily
due to the ease of optimization of the models using them and to reduce
the learning degeneracies such as vanishing gradients that can cripple con-
ventional RNNs (Pascanu, Mikolov, & Bengio, 2013). Most important, by
designing special gates, it is easier to impose a particular behavior on the
model, such as creating shortcut connections through time by using input
and forget gates in LSTMs and resetting the memory via the reset gate of a
GRU. These gates also bring modularity to the neural network design that
seems to make training those models easier. Gated RNNs are also empiri-
cally shown to achieve better results for a wide variety of real-world tasks.

Recently, using unitary and orthogonal matrices (instead of general ma-
trices) as the recurrence matrix of RNNs (Arjovsky, Shah, & Bengio, 2016;
Jing et al., 2016; Henaff, Szlam, & LeCun, 2016) has attracted an increasing
amount of attention in the machine learning community. This trend is mo-
tivated by the ability of these matrix constraints to effectively solve tasks
involving long-term dependencies and the vanishing or exploding gradi-
ents problem (Bengio, Simard, & Frasconi, 1994; Hochreiter, 1991). Thus a
unitary or orthogonal RNN can capture long-term dependencies more ef-
fectively in sequential data than a conventional RNN or LSTM. As a result,
this type of model has been shown to perform well on tasks that would
require rote memorization (Hochreiter, 1991) and simple reasoning, such
as the copy task (Hochreiter & Schmidhuber, 1997) and sequential MNIST
(Le, Jaitly, & Hinton, 2015). Those models can be viewed as an extension to
vanilla RNNs (Jordan, 1997) that replaces the transition matrices with either
unitary or orthogonal matrices.

In this letter, we refer to the ability of a model to omit parts of the input
sequence that contain redundant information and to filter out the noise in-
put in general as the means of a forgetting mechanism. Previously (Gers,
Schmidhuber, & Cummins, 2000) showed the importance of the forgetting
mechanism for LSTM networks. With similar motivations, we discuss the
utilization of a forgetting mechanism for RNNs with orthogonal transitions.
The importance of forgetting for those networks is mainly due to the fact
that unitary or orthogonal RNNs can backpropagate the gradients without
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vanishing through time, and it is very easy for them to just have an out-
put that depends equally on all the elements of the entire input sequence.
From this perspective, learning to forget can be difficult with unitary or or-
thogonal RNNs because these models can clog their memory with useless
information. However, most real-world applications and natural tasks re-
quire the model to filter out irrelevant or redundant information from the
input sequence. We argue that difficulties of forgetting can cause unitary
and orthogonal RNNs to perform badly on many realistic tasks, and we
demonstrate this empirically with several real-world tasks such as question
answering and language modeling.

We propose a new architecture, the gated orthogonal recurrent unit
(GORU), which combines the advantages of gated RNNs and unitary or
orthogonal RNNs: the ability to capture long-term dependencies by using
orthogonal matrices and the ability to “forget” by using a GRU structure.
We demonstrate that GORU is able to learn long-term dependencies effec-
tively, even in complicated data sets that require a forgetting ability. In this
work, we focus on using orthogonal transition matrices, which are a subset
of the unitary matrices.

GORU outperforms several variations of unitary or orthogonal RNNs
(Arjovsky et al., 2016; Jing et al., 2016; Mhammedi, Hellicar, Rahman, &
Bailey, 2017) on language modeling, denoising, and the question answer-
ing tasks. We show that they fail catastrophically on a denoising task that
requires the model to forget. On question answering, speech spectrum pre-
diction, algorithmic, and the denoising tasks, GORU achieves better accu-
racy on the test set over all other models that we compare against. We have
attempted to use gates on the unitary matrices with complex numbers, but
we encountered some training challenges of training gating mechanisms;
thus, we focus solely on orthogonal matrices in this letter.

2 Background

Given an input sequence xt ∈ R
dx , t ∈ {1, 2, . . . , T}, a vanilla RNN defines a

sequence of hidden states ht ∈ R
dh updated at each time step according to

the rule

ht = φ(Whht−1 + Wxxt + b), (2.1)

where Wh ∈ R
dh×dh , Wx ∈ R

dx×dh , and b ∈ R
dh are model parameters and φ

is a nonlinear activation function. RNNs have proven to be effective for
solving sequential tasks due to their flexibility. However, a well-known
problem, vanishing or exploding gradients, has prevented RNNs from effi-
ciently learning long-term dependencies (Bengio et al., 1994). Several ap-
proaches have been developed to solve this problem, with LSTMs and
GRUs being the most successful and widely used.
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Figure 1: The GRU architecture. r and z are reset and update gates. h is the
hidden state.

2.1 Gated Recurrent Unit. A big step forward from LSTM is the GRU,
proposed by Cho, Van Merriënboer, Bahdanau, and Bengio (2014), which
removes the extra memory state in LSTM. Specifically, the hidden state ht

in a GRU is updated as follows:

ht = zt � ht−1 + (1 − zt ) � tanh(Wxxt

+ rt � Whht−1 + bh), (2.2)

zt = sigmoid(Wz[ht−1, xt] + bz), (2.3)

rt = sigmoid(Wr[ht−1, xt] + br), (2.4)

where W{z,r} ∈ R
(dh+dx )×dh , Wx ∈ R

dx×dh , Wh ∈ R
dh×dh , and b{z,r,h} ∈ R

dh . Fig-
ure 1 demonstrates the architecture of the GRU model.

Although LSTMs and GRUs were proposed to solve the exploding and
vanishing gradient problem (Hochreiter, 1991; Bengio et al., 1994), they can
in practice still suffer from this issue for long-term tasks. As a result, gradi-
ent clipping (Pascanu et al., 2013) is usually required in the training process,
although clipping addresses only gradient explosion.

2.2 Unitary and Orthogonal RNNs. A complex-valued matrix U is uni-
tary when it satisfies UU∗T = I. A matrix U is orthogonal if it is both unitary
and real valued. Therefore, any vector x that multiplies a unitary or an or-
thogonal matrix satisfies

||Ux|| = ||x||. (2.5)

Thanks to this property, a unitary or orthogonal matrix is able to preserve
the norm of vectors that flow through and thus allow for the gradient to
propagate through longer time steps. Recent papers (Arjovsky et al., 2016;
Henaff et al., 2016) pointed out that unitary or orthogonal matrices can effec-
tively prevent the gradient vanishing or explosion problem in conventional
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RNNs. After this work, several other unitary or orthogonal RNN models
have been proposed (Jing et al., 2016; Wisdom, Powers, Hershey, Le Roux,
& Atlas, 2016; Hyland & Rtsch, 2017; Mhammedi et al., 2017), all showing
promising abilities in capturing long-term dependencies in data.

A unitary or orthogonal RNN is simply defined as replacing the recur-
rence matrices in a vanilla RNN by unitary or orthogonal matrices:

ht = σ (Uht−1 + Wxxt, b). (2.6)

In practice, unitary or orthogonal matrices perform effectively when they
are combined with a nonlinear function such as the modReLU (Arjovsky
et al., 2016; Jing et al., 2016),

modReLU(z, b)i = zi

|zi|ReLU(|zi| + bi), (2.7)

where the bias vector b is a shared trainable parameter and |zi| is the norm
of the complex number zi. Note that this nonlinearity preserves the phase
in the complex domain.

2.3 Parameterization of Orthogonal Matrices. There are many unitary
matrix parameterization methods (Arjovsky et al., 2016; Wisdom et al., 2016;
Jing et al., 2016).

One of the most successful architectures, proposed by Arjovsky et al.
(2016), parameterizes the hidden-to-hidden matrix as

W = D3T2F−1D2�T1FD1. (2.8)

Here D1,2,3 are diagonal matrices with each element eiω j , j = 1, 2, . . . , n. T1,2

are reflection matrices, and T = I − 2 v̂̂v†

||̂v||2 , where v̂ is a vector with each of its
entries as a parameter to be trained. � is a fixed permutation matrix. F and
F−1 are Fourier and inverse Fourier transform matrices, respectively. Since
each factor matrix here is unitary, the product W is also a unitary matrix.

Instead of this parameterization, another approach is to use a geodesic
gradient descent method proposed by Wisdom et al. (2016):

A(t) ≡ G(t)†
W(t) − W(t)†

G(k), (2.9)

W(t+1) ≡
(

I + λ

2
A(t)

)−1 (
I − λ

2
A(t)

)
W(t). (2.10)

This method is able to span the entire unitary space, which gives full rep-
resentativeness. It also empirically shows an advantage over the previous
method (Arjovsky et al., 2016).
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Figure 2: Orthogonal matrix parameterization by 2-by-2 rotation matrices. Each
row represents one neuron in the hidden state. Each junction represents a 2-by-2
rotation matrix on the two corresponding neurons.

Jing et al. (2016) proposed another systematic parameterization method.
The hidden-to-hidden matrix U is decomposed into a sequence of 2-by-2
rotation matrices, as shown in Figure 2. Each 2-by-2 rotation contains one
trainable rotation parameter.

3 The Gated Orthogonal Recurrent Unit RNN

In this section, we discuss the forgetting problem of vanilla orthogonal
RNNs and demonstrate the architecture of gated orthogonal recurrent unit
(GORU) RNN.

3.1 The Problem of Forgetting in Orthogonal RNNs. First, we argue
for the advantage of an RNN that can forget some of its past inputs. This is
desirable because we seek a state representation that can capture the most
important elements of the past sequence and can discard irrelevant details
or noise. This ability becomes particularly critical when the dimensionality
of the RNN state is smaller than the product of the sequence length with the
input dimension, that is, when some form of compression is necessary. For
this compression to be most useful for further processing, it is likely that
it requires a nonlinear combination of the past input values, allowing the
network to forget and ignore unnecessary elements from the past.

Now consider an RNN whose state is obtained as a sequence of orthogo-
nal transformations, with each transformation being a function of the input
at a given time step. Let us focus on the class of orthogonal transformations
that are basically rotation for simplicity, which (noncommutativity aside)
are analogous to addition in the space of angles. When we compose several
orthogonal operators, we just add more angles together. So we forget in the
mild sense that we get in the state a combination of several rotations (e.g.,
adding the angles), and we lose track of exactly which individual rotations
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were applied. The advantage is that in the space of angles, the derivative
of the final angle to any of the individually added angle is one, so there
is no vanishing gradient. However, we cannot have complete forgetting,
such as making the new state independent of the past inputs (or of some of
them that we wish to forget). For a new rotation to cancel an old rotation,
one would need the new rotation to “know” about the old rotation to can-
cel (i.e., it would need to be a function of the old rotation). But this is not
what happens, because each new rotation is chosen before looking at the
current state. Instead, in a regular RNN, the state update depends in a non-
linear way on the past state, so that, for example, when a particular value
of the state is reached, it can be reset to zero. This would not be possible
with just the composition of orthogonal transformations. These considera-
tions motivate an architecture in which we combine orthogonal or unitary
transformations with nonlinearities that can be trained to forget when and
where it is appropriate.

3.2 GORU Architecture. This section introduces the GORU. In our ar-
chitecture, we change the hidden state loop matrix into an orthogonal ma-
trix and change the respective activation function to modReLU:

ht = zt � ht−1 + (1 − zt ) � modReLU(Wxxt

+ rt � (Uht−1) + bh), (3.1)

zt = sigmoid(Wzht−1 + Wz,xxt + bz), (3.2)

rt = sigmoid(Wrht−1 + Wr,xxt + br), (3.3)

where σ is a suitable nonlinear activation function and Wz, Wr ∈ R
dh×dh ,

bz, br, bh ∈ R
dh , and Wz,x, Wr,x, Wx ∈ R

dx×dh . rt and zt are the reset and up-
date gates, respectively. U ∈ R

dh×dh is kept orthogonal. In fact, we have mod-
ified only the main loop that absorbs new information to the orthogonal
while leaving the gates unchanged compared to the GRU. Figure 3 demon-
strates the architecture of the GORU model.

The update gates of the GORU help the model filter out irrelevant or
noise information coming from the input. It can be thought of as acting like
a low-pass filter. The orthogonal transition matrices help the model prevent
the gradients from vanishing through time. However, the ways an orthog-
onal transformation can interact with the hidden state of an RNN is limited
to reflections and rotations. The reset gate enables the model to rescale the
magnitude of the hidden state activations (ht).

In the following experiment, we follow the FFT-style parameterization
method demonstrated in Jing et al. (2016). Similar to the tunable-style ar-
chitecture shown in Figure 2, it is also built up by 2-by-2 rotational matri-
ces. This architecture provides full symmetry with a minimum number of
parameters, as shown in Figure 4.
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Figure 3: Architecture of the GORU model. h is the hidden state. For GORU, r
and z are reset and update gates. It uses modReLU activation function instead
of tanh.

Figure 4: FFT-style orthogonal matrix parameterization by 2-by-2 rotation ma-
trices. Each row represents one neuron in the hidden state. Each junction repre-
sents a 2-by-2 rotation matrix on the corresponding two neurons.

4 Experiments

We compare GORU with two unitary RNNs—EURNN (Jing et al., 2016) and
uRNN (Arjovsky et al., 2016)—one orthogonal RNN—oRNN (Mhammedi
et al., 2017)—and two other well-known gated RNNs (LSTMs and GRUs).
Previous research on unitary or orthogonal RNNs has mainly focused on
memorization tasks; in contrast, we focus on more realistic noisy tasks,
which require the model to discard parts of the input sequence to be able to
use its capacity efficiently. (GORU is implemented in Tensorflow, available
at https://github.com/jingli9111/GORU-tensorflow.)

For synthetic tasks, including a copying memory task, a denoising task,
and an algorithmic task, we set the hidden state size to match the total
number of parameters. Specifically, we set the hidden size equal to 90, 100,
and 128 for LSTM, GRU, and GORU, respectively, and 512 for all unitary
or orthogonal RNNs. The total number of parameters is about 38,000 for
each model in the copying memory and denoising tasks. We used 50,000
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Figure 5: Copying memory task with delay time T = 200 and T = 500: cross
entropy on validation set for each iteration. Hidden state sizes are set to 128, 512,
512, 512, 100, 90 for GORU, oRNN, uRNN, EURNN, GRU, LSTM, respectively,
to match the total number of parameters. GORU is the only gated system to
successfully solve this task; both GRU and LSTM get stuck at baseline. EURNN
and uRNN are seen to converge within hundreds of iterations. oRNN also gets
stuck at baseline.

training examples for each of these two tasks. We report the cross entropy
on a separate validation data with 1000 examples for each training iteration.

4.1 Copying Memory Task. The first task we consider is the well-
known copying memory task. This synthetic task is commonly used to test
the network’s ability to remember information seen T time steps earlier.

Specifically, the task is defined as follows. An alphabet consists of sym-
bols {ai}, i ∈ {0, 1, . . . , n − 1, n, n + 1}, the first n of which represent data and
the remaining two representing “blank” and “marker,” respectively. Here
we choose n = 8. The input sequence contains 10 data steps, followed by
“blank.” The RNN model is supposed to output “blank” and give the orig-
inal sequence once it sees the “marker.” Note that each instance has a dif-
ferent location for these 10 elements of data.

In this experiment, we use the RMSProp optimizer (Tieleman & Hinton,
2012). We apply a grid search on learning rate, decay rate, and minibatch
size. The learning rate is chosen from {0.01, 0.001, 0.0001}, the decay rate
from {0.5, 0.5, 0.99}, and the minibatch size from {64, 128, 256}.

This task only requires the model to efficiently overcome the gradient
vanishing or explosion problem and does not require a forgetting abil-
ity. Unitary RNNs perform perfectly and go through to the baseline in no
time—as previously seen. The vanilla orthogonal RNN gets stuck at the
baseline. The GORU is the only gated system to successfully solve this task
up to T = 500, while the GRU and LSTM get stuck at baseline, as shown in
Figure 5. An ablation study on this task is in the appendix.

4.2 Denoising Task. We evaluate the forgetting ability of each RNN
architecture on a synthetic denoising task. A list of data points is located
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Figure 6: Denoising task with sequence length T = 200 and T = 500: cross en-
tropy on validation set for each iteration. Hidden state sizes are set to 128, 512,
512, 512, 100, and 90 for GORU, oRNN, uRNN, EURNN, GRU, and LSTM, re-
spectively, to match the total number of parameters. For T = 200, unitary or
orthogonal RNNs get stuck at baseline because they lack a forgetting mecha-
nism, while gated RNN models successfully solve the task. For T = 500, only
GORU is able to solve the denoising task.

randomly in a long, noisy sequence. The RNN model is supposed to filter
out the useless part (“noise”) and output the remaining sequential labels.

Similarly to the labels of the copying memory task, an alphabet consists
of symbols {ai}, i ∈ {0, 1, . . . , n − 1, n, n + 1}, the first n of which represent
data and the remaining two represent “noise” and “marker,” respectively.
The input sequence contains 10 randomly located data steps, and the rest
are filled by “noise.” The RNN model is supposed to output those 10 data
in a sequence after it sees the “marker.” We use an RMSProp Optimizer. We
use the same grid search as in the copying memory task.

This task requires the ability to learn long dependencies and to forget
the noisy input. GORU significantly outperforms all other RNN models,
as shown in Figure 6. Unitary or orthogonal RNNs, however, get stuck at
baseline, just as we intuitively expected. An ablation study on this task is
in the appendix.

4.3 Algorithmic Task. We tested the RNN models on the algorithmic
task as described in Li, Tarlow, Brockschmidt, and Zemel (2015). The model
is fed with a random graph as an input sequence and is required to output
the shortest path at the end of the sequence. We have used the same setup
and data provided in Li et al. (2015). The data are divided into a training set
with 1000 examples, a validation set of 50 examples, and 1000 examples for
test.

We used an Adam optimizer (Kingma & Ba, 2014) with a grid search
on hyperparameters. The learning rate is chosen from {0.01, 0.001, 0.0001},
which is determined by the validation set performance for each model in-
dividually. The minibatch size is set to be 50 for all models.
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Table 1: Algorithmic Test on GORU, GRU, LSTM, EURNN, oRNN, and uRNN.

Model Accuracy

LSTM 70.3 ± 1.1
GRU 64.2 ± 2.1
uRNN 66.3 ± 2.2
oRNN 44.5 ± 2.4
EURNN 54.5 ± 0.9
GORU (EURNN FFT-style) 73.9 ± 1.4
GORU (Householder) 73.6 ± 2.3

Notes: GORU significantly outperforms
all other RNN models. The bold number
represents the highest accuracy.

We summarize the test set results in Table 1. We find that the GORU
outperforms GRU and LSTM and unitary and orthogonal RNNs.

4.4 bAbI: Episodic Question Answering. We tested the ability of our
RNN models on a word-level episodic question answering task. The bAbI
data set (Weston et al., 2015) examines RNN’s ability to understand lan-
guage and perform basic logical reasoning. Each training example is a set
of statements that are logically related in some fashion. For instance, one
training example consists of these three statements and a question: Mary
went to the bathroom. John moved to the hallway. Mary traveled to the office. Where
is Mary? Answer: office.

There are 20 types of questions that can be asked—some requiring de-
duction between lines and some requiring association. The bAbI data set
is useful because it contains a small vocabulary and short sentences, and
it requires one-word answers for each story. Thus, it is a good benchmark-
ing test because the word mapping layers are not the dominant sources of
parameters.

We test each task with a unidirectional RNN without any attention mech-
anism. In detail, we word-embed and then feed one RNN the sequence of
statements. Another RNN is fed the word-embedded question. Then we
concatenate the outputs of the two RNNs into a single input for a third
RNN that then outputs the correct word.

For each task, we use 8000 training examples, 2000 validation examples,
and 1000 test examples. The validation set is used to determine the best
hyperparameters with early stopping for each individual model. The early
stop criterion is used so that there is no decrease in validation loss for five
epochs. We summarize the test set results in Table 2. We find that the GORU
performs better on average than GRU and LSTM and unitary and orthogo-
nal RNNs.
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Table 2: Question Answering Task on bAbI Data Set.

Task GORU GRU LSTM EURNN uRNN oRNN

1 Single supporting fact 45.8 49.1 49.3 47.2 45.7 15.6
2 Two supporting facts 39.5 38.5 32.3 24.3 18.3 18.2
3 Three supporting facts 33.5 32.2 20.6 22.5 19.1 20.5
4 Two argument relations 62.7 64.6 67.5 56.1 56.1 18.0
5 Three argument relations 87.0 78.0 52.3 56.2 51.9 32.5
6 Yes/no questions 53.6 50.5 49.3 50.5 49.2 50.1
7 Counting 77.7 79.5 76.9 71.9 72.7 50.0
8 Lists/sets 75.0 75.5 76.8 56.5 47.9 63.4
9 Simple negation 62.9 63.9 63.5 60.6 61.8 63.9
10 Indefinite knowledge 45.4 44.8 46.0 42.6 43.3 43.6
11 Basic coreference 69.3 71.2 71.1 72.1 70.0 17.9
12 Conjunction 69.9 71.6 71.9 72.7 71.9 16.2
13 Compound coreference 92.7 94.2 93.8 92.4 93.2 17.2
14 Time reasoning 37.9 39.2 34.4 20.0 23.9 20.8
15 Basic deduction 55.2 57.4 20.9 25.0 27.1 25.4
16 Basic induction 44.0 45.9 45.9 43.3 43.9 26.2
17 Positional reasoning 59.6 50.5 51.6 51.2 49.5 50.6
18 Size reasoning 90.5 89.9 91.8 89.7 86.5 51.2
19 Path finding 8.9 9.6 8.2 9.0 7.0 10.2
20 Agent’s motivations 97.7 97.7 96.5 93.3 93.3 77.6
Mean performance 60.4 58.2 56.0 52.9 51.6 34.5

Notes: Test accuracy (%) on GORU, GRU, LSTM, EURNN, uRNN, and oRNN. All
RNN models are unidirectional without extra memory or attention mechanism. GORU
achieves the highest average accuracy. The bold numbers represent the highest accuracy.

4.5 Language Modeling: Character-Level Prediction. We test each
RNN on character-level language modeling. The RNN is fed one charac-
ter for each step from a real context and is supposed to output the pre-
diction for the next character. We use the Penn Treebank corpus (Mar-
cus, Marcinkiewicz, & Santorini, 1993). The text is in English, and the
vocabulary consists of 10,000 words. The train/val/test split is 5.1 mil-
lion/400,000/450,000 characters, and rare words are replaced with <unk>.

We use RMSProp with a grid search of minibatch size in {32, 64} and
learning rate in {0.001, 0.0001} for each model. Each training sequence is un-
folded into 50 time steps. Similar to most other work in language modeling,
at the end of each sequence, the hidden state is saved and used to initialize
the hidden state for the next sequence. This allows the neural network to
give consistent predictions even at the beginning of a sequence.

We used the validation set to choose the best hyperparameters with early
stopping for each individual model. The early stopping criterion is so that
there is no decrease in validation loss for five epochs. We show the final test
performance in Table 3 by comparing their performance in terms of bits
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Table 3: Penn Treebank Character-Level Modeling Test on GORU, GRU, LSTM,
and EURNN.

Model bpc Number of Units

LSTM 1.656 184
GRU 1.639 216
EURNN 1.747 1024
uRNN 1.750 1024
oRNN (Mhammedi et al., 2017) 1.68 512 (m = 510)
GORU (EURNN FFT-style) 1.654 256
GORU (Householder) 1.652 256
GRU (w/ modReLU) 1.702 216
GORU (w/ ReLU) 1.785 256
GORU (w/ tanh) 1.780 256
GORU (w/o reset gate) 1.759 256
GORU (w/o update gate) 1.718 256

Notes: We use only single-layer models. We choose the size
of the models to match the number of parameters, which
is about 184,000 for each model. GORU is able to outper-
form unitary and orthogonal RNNs. We also tested the per-
formance of restricted GORU, which shows the necessity of
both reset and update gates.

per character. GORU is performing comparably to LSTM and GRU in our
experiments, and it performs significantly better than unitary or orthogonal
RNNs.

We have also done several ablation studies in this task:

1. Disabling the reset or update gates. When disabling the reset gate,
equation 3.2 is removed and zt become trainable parameters. When
disabling the update gate, equation 3.3 is removed, and rt become
trainable parameters.

2. Using tanh or ReLU in GORU instead of modReLU.
3. Using modReLU in GRU instead of tanh.
4. Using Householder reflection orthgonal matrix architecture (Mha-

mmedi et al., 2017) instead of EUNN FFT-style architecture (Jing
et al., 2016)

The first three ablation models give significantly worse performance than
GORU. These empirically prove the importance of gated mechanisms and
the need for modReLU for GORU. Traditional activation functions such as
ReLU or tanh still give vanishing gradients even with an orthogonal recur-
rence matrix. The last ablation model shows that using Householder reflec-
tion orthogonal matrix architecture in GORU gives a similar result as using
EURNN FFT-style architecture. This proves that the advantage of GORU
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Table 4: Speech Spectrum Prediction Test on LSTM, GRU, EURNN, GORU,
uRNN, and oRNN.

Model Number of Units MSE(validation) MSE(test)

LSTM 50 51.0 50.7
GRU 60 52.1 52.4
EURNN(Jing et al., 2016) 128 51.8 51.9
oRNN 128 46.2 46.9
uRNN 108 — —
GORU (EURNN FFT-style) 64 45.5 45.7
GORU (Householder) 64 40.9 43.0
GORU (with ReLU) 64 45.8 47.4
GORU (with tanh) 64 59.7 59.6
GORU (without reset gate) 64 45.9 46.9
GORU (without update gate) 64 46.3 47.9

Note: The hidden size of each model is set to match the total number of parame-
ters. uRNN failed to converge in this task. GORU significantly outperforms all other
RNN models.

over oRNN comes from the additional gates instead of the parameteriza-
tion method.

Since most of the relevant information for character-level prediction can
be obtained only by using the recent rather than distant past (Karpathy,
Johnson, & Li, 2015), the core of the character-prediction challenge does not
involve the main strength of unitary or orthogonal RNNs.

4.6 Speech Spectrum Prediction. We tested the ability of our RNN
models on a real-world speech spectrum prediction task in the log-
magnitude short-time Fourier transform (STFT) (Wisdom et al., 2016; Jing
et al., 2016). We used the TIMIT data set (Garofolo et al., 1993) sampled at
8 kHz. The audio file is initially divided into short time frames, Fourier-
transformed into the frequency domain, transferred to log scale, and finally
normalized to match the maximum value of each example. In our STFT op-
eration, we used a Hann analysis window of 256 samples (32 milliseconds)
and a window hop of 128 samples (16 milliseconds). In this task, the RNNs
are required to predict the log-magnitude of the STFT frame at time t + 1,
given all the log-magnitudes of STFT frames up to time t.

We used a training set with 2400 utterances, a validation set of 600 utter-
ances, and a test set of 1000 utterances. We used an Adam optimizer with
a grid search on learning rate in {0.01, 0.001} and batch size in {32, 64 128}.
The hidden state size is set to keep the total number of parameters the same
for each model, which is about 42,000.

We found that GORU significantly outperforms all other models with
the same number of parameters as shown in Table 4.



Gated Orthogonal Recurrent Units 779

Figure 7: Copying memory task with delay time T = 200 and denoising task
with delay time T = 200: cross-entropy on validation set for each iteration. In
each task, we compare GORU, GORU with ReLU or tanh, and GORU without
reset or update gate.

5 Conclusion

We have built a novel RNN that brings the benefits of orthogonal matri-
ces to gated architectures: the gated orthogonal recurrent unit (GORU). By
constraining the recurrence matrix of the GRU to be an orthogonal ma-
trix and replacing the nonlinear activation with a modReLU, GORU gains
the advantage of unitary or orthogonal RNNs since the gradient can pass
through long time steps without exploding. Our empirical results showed
that GORU is the only model we found that could solve both the synthetic
copying task and the denoising task. Moreover, GORU is able to outperform
GRU and LSTM in several benchmark tasks.

These results suggest that the GORU is the first step in bringing an ex-
plicit forgetting mechanism to the class of unitary or orthogonal RNNs. Our
method demonstrates how to incorporate orthogonal matrices into a variety
of neural network architectures. We are excited to open the gate of orthog-
onal matrix RNNs to real-world applications.

Appendix: Ablation Study on the Copying Task and Denoising Tasks

Here we show more results of the ablation study on the copying and de-
noising tasks, which test the long-term memory and forgetting ability, re-
spectively, in Figure 7. For the copying task, the GORU without reset gate
can still achieve optimum validation set performance in a small number of
steps. GORU without an update gate gets stuck at baseline. GORU with
other activation functions can still achieve optimum validation set perfor-
mance, but the task requires significantly more training iterations. For the
denoising task, the GORU with any conventional activation function can
still achieve optimum validation set performance in a small number of
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Figure 8: Copying memory task with delay time T = 200 and denoising task
with delay time T = 200: cross entropy on validation set for each iteration. In
each task, we compare the GORU with EURNN FFT-style parameterization and
the GORU with Householder parameterization.

Table 5: Hyperparameters for the Copying Task.

Model Learning Rate Decay Rate Batch Size

LSTM — — —
GRU — — —
uRNN 0.001 0.9 128
oRNN — — —
EURNN 0.001 0.5 128
GORU 0.001 0.9 128

Note: The dash means the model fails the task with all
possible hyperparameters.

steps. Both reset and update gates are crucial for this task. This matches
our intuition that only the orthogonal recurrence matrix is responsible for
solving the gradient vanishing or explosion problem. Gates are responsible
for forgetting which is important in the denoising task.

In Figure 8, we show the performance of GORU with different parame-
terization methods. We find that GORU with both parameterizations is able
to achieve optimum validation set performance.

A.1 Experiment Detail. Here we show the grid search detail for each
model in each task. For synthetic tasks (copying memory task, denoising
task, and algorithmic task), we choose hyperparameters with the lowest
validation loss. For natural language tasks, we pick hyperparameters with
the highest validation accuracy.

The best hyperparameters are listed in Tables 5 to 9.
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Table 6: Hyperparameters for the Denoising Task.

Model Learning Rate Decay Rate Batch Size

LSTM 0.001 0.9 128
GRU 0.001 0.9 128
uRNN 0.0001 0.9 128
oRNN — — —
EURNN 0.0001 0.9 128
GORU 0.001 0.9 128

Note: The dash means the model fails the task with all
possible hyperparameters.

Table 7: Hyperparameter for the Algorithmic Task.

Model Learning Rate

LSTM 0.001
GRU 0.001
uRNN 0.0001
oRNN 0.0001
EURNN 0.0001
GORU 0.001

Table 8: Hyperparameters for the Language Modeling Task.

Model Learning Rate Decay Rate Batch Size

LSTM 0.001 0.99 32
GRU 0.001 0.99 32
uRNN 0.0001 0.9 32
oRNN 0.0001 0.9 32
EURNN 0.0001 0.5 32
GORU 0.001 0.9 32

Table 9: Hyperparameters for the Speech Prediction Task.

Model Learning Rate Batch Size

LSTM 0.01 64
GRU 0.01 64
EURNN 0.001 32
oRNN 0.001 32
uRNN 0.001 32
GORU 0.001 32
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