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Abstract

Stacking long short-term memory (LSTM)
cells or gated recurrent units (GRUs) as part
of a recurrent neural network (RNN) has be-
come a standard approach to solving a num-
ber of tasks ranging from language model-
ing to text summarization. While LSTMs
and GRUs were designed to model long-
range dependencies more accurately than
conventional RNNs, they nevertheless have
problems copying or recalling information
from the long distant past. Here, we derive
a phase-coded representation of the memory
state, Rotational Unit of Memory (RUM),
which unifies the concepts of unitary learn-
ing and associative memory. We show ex-
perimentally that RNNs based on RUMs can
solve basic sequential tasks such as mem-
ory copying and memory recall much bet-
ter than LSTMs/GRUs. We further demon-
strate that by replacing LSTM/GRU with
RUM units we can apply neural networks to
real-world problems such as language mod-
eling and text summarization, yielding re-
sults comparable to the state of the art.

1 Introduction

An important element of the ongoing neural rev-
olution in Natural Language Processing (NLP) is
the rise of Recurrent Neural Networks (RNNs),
which have become a standard tool for address-
ing a number of tasks ranging from language
modeling, part-of-speech tagging and named en-
tity recognition to neural machine translation, text
summarization, question answering, and building
chatbots/dialog systems.

As standard RNNs suffer from explod-
ing/vanishing gradient problems, alternatives such
as long short-term memory (LSTM) (Hochreiter
and Schmidhuber, 1997) or gated recurrent units
(GRU) (Cho et al., 2014) have been proposed and
have now become standard.
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(a)

(b) Story (abridged) The raccoon that topples your trashcan

and pillages your garden may leave more than just a

mess. More likely than not, it also contaminates your

yard with parasites – most notably, raccoon roundworms

baylisascaris procyonis (...) That is true in varying degrees

throughout North America, where urban raccoons may
infect people more than previously assumed. Led by

Weinstein, the UCSB researchers wondered if most

human infections went undetected… Their study,

appearing in the CDC Journal Emerging Infectious

Diseases, found that 7 percent of surveyed individuals
tested positive for raccoon roundworm antibodies. That
was news to Weinstein, who said the researchers

wouldn't have been surprised if they'd found no

evidence of human infection… Over 90 percent of
raccoons in Santa Barbara play host to this parasite,
which grows to about the size of a No. 2 pencil and can

produce over 100,000 eggs per day (…) Sometimes they

reach the brain, with potentially devastating

consequences. This infection, termed “baylisascariasis,”
kills mice, has endangered the allegheny woodrat and
has caused disease like blindness or severe brain

damage in dozens of people, including a toddler in Santa

Barbara back in 2002.

LSTM generated summary “baylisascariasis,” kills mice,

has endangered the allegheny woodrat and has caused

disease like blindness or severe consequences. This

infection, termed “baylisascariasis,” kills mice, has

endangered the allegheny woodrat and has caused

disease like blindness or severe consequences. This

infection, termed “baylisascariasis,” kills mice, has

endangered the alleghenywoodrat.

RUM (ours) generated summary Urban raccoons may

infect people more than previously assumed. 7 percent

of surveyed individuals tested positive for raccoon

roundworm antibodies. Over 90 percent of raccoons in

Santa Barbara play host to this parasite.

Figure 1: RUM vs. LSTM (a) Synthetic sequence of
emojis: a RUM-based RNN recalls the emoji at posi-
tion 1 while LSTM does not. (b) Text summarization: a
seq2seq model with RUM recalls relevant information
while LSTM generates repetitions near the end.



Nevertheless, LSTMs and GRUs fail to demon-
strate really long-term memory capabilities or effi-
cient recall on synthetic tasks (see Figure 1). Fig-
ure 1 shows that when RNN units are fed a long
string, e.g., emojis in subfigure (a), they strug-
gle to represent the input in their memory, which
results in recall or copy mistakes. The origins
of these issues are two-fold: (i) a single hidden
state cannot memorize complicated sequential dy-
namics and (ii) the hidden state is not manipu-
lated well, resulting in information loss. Typically,
these are addressed separately: by using external
memory for (i), and gated mechanisms for (ii).

Here, we solve (i) and (ii) jointly by propos-
ing a novel RNN unit, Rotational Unit of Memory
(RUM), which manipulates the hidden state by ro-
tating it in an Euclidean space, which results in a
better information flow. This remedy to (ii) affects
(i) to the extent that the external memory is less
needed. As a proof of concept, in Figure 1 (a),
RUM recalls correctly a faraway emoji.

We further show that RUM is fit for real-world
NLP tasks. In Figure 1 (b), a RUM-based seq2seq
model produces a better summary than what a
standard LSTM-based seq2seq model yields. In
this particular example, LSTM falls into the well-
known trap of repeating information close to the
end, while RUM avoids it. Thus, RUM can be seen
as a more “well-rounded” alternative to LSTM.

Given the example from Figure 1, we ask the
following questions: Does the long-term mem-
ory’s advantage for synthetic tasks such as copy-
ing and recall translate to improvements for real-
world NLP problems? Can RUM solve issues (i)
and (ii) more efficiently? Does a theoretical ad-
vance improve real-world applications?

We propose RUM as the answer to these ques-
tions via experimental observations and mathe-
matical intuition. We combine concepts from uni-
tary learning and associative memory to utilize the
theoretical advantages of rotations, and then we
show promising applications to hard NLP tasks.
Our evaluation of RUM is organized around a
sequence of tests: 1. Pass a synthetic memory
copying test; 2. Pass a synthetic associative recall
test; 3. Show promising performance for question
answering on the bAbI dataset; 4. Improve the
state-of-the-art for character-level language mod-
eling on the Penn Treebank; 5. Perform effective
seq2seq text summarization, training on the diffi-
cult CNN / Daily Mail summarization corpus.

To the best of our knowledge, there is no previ-
ous work on RNN units that shows such promis-
ing performance, both theoretical and practical.
Our contributions can be summarized as follows:
(i) We propose a novel representation unit for
RNNs based on an idea not previously explored in
this context – rotations. (ii) We show theoretically
and experimentally that our unit models much
longer distance dependencies than LSTM and
GRU, and can thus solve tasks such as memory
recall and memory copying much better. (iii) We
further demonstrate that RUM can be used as a re-
placement for LSTM/GRU in real-world problems
such as language modeling, question answering,
and text summarization, yielding results compara-
ble to the state of the art.1

2 Related Work

Our work rethinks the concept of gated models.
LSTM and GRU are the most popular such mod-
els, and they learn to generate gates — such as
input, reset and update gates — that modify the
hidden state through element-wise multiplication
and addition. We manipulate the hidden state in
a completely different way: instead of gates, we
learn directions in the hidden space towards which
we rotate it.

Moreover, since rotations are orthogonal, RUM
is implicitly orthogonal, meaning that RUM does
not parametrize the orthogonal operation, but
rather extracts it from its own components. Thus,
RUM is also different from explicitly orthogo-
nal models such as uRNN, EURNN, GORU, and
all other RNN units that parametrize their norm-
preserving operation (see below).

Rotations have fundamental applications in
mathematics (Artin, 2011; Hall, 2015) and physics
(Sakurai and Napolitano, 2010). In computer
vision, rotational matrices and quaternions con-
tain valuable information and have been used to
estimate object poses, (Katz, 2001; Shapiro and
Stockman, 2001; Kuipers, 2002). Recently, effi-
cient, accurate and rotationally invariant represen-
tation units have been designed for convolutional
neural networks (Worrall et al., 2017; Cohen et al.,
2018; Weiler et al., 2018). Unlike this work, we
use rotations to design a new RNN unit with ap-
plication to NLP, rather than vision.

1Our TensorFlow (Abadi et al., 2015) code, visualizations
and summaries can be found at http://github.com/
rdangovs/rotational-unit-of-memory

http://github.com/rdangovs/rotational-unit-of-memory
http://github.com/rdangovs/rotational-unit-of-memory


Unitary learning approaches the problem of
vanishing and exploding gradients, which obstruct
learning of really long-term dependencies (Bengio
et al., 1994). Theoretically, using unitary and or-
thogonal matrices will keep the norm of the gra-
dient: the absolute value of their eigenvalues is
raised to a high power in the gradient calcula-
tion, but it equals one, so it neither vanishes, nor
explodes. Arjovsky et al. (2016) (unitary RNN,
or uRNN) and Jing et al. (2017b) (Efficient Uni-
tary ENN, or EURNN) used parameterizations to
form the unitary spaces. Wisdom et al. (2016)
applied gradient projection onto a unitary mani-
fold. Vorontsov et al. (2017) used penalty terms as
a regularization to restrict the matrices to be uni-
tary. Unfortunately, such theoretical approaches
struggle to perform outside of the domain of syn-
thetic tasks, and fail at simple real-world tasks
such as character-level language modeling (Jing
et al., 2017a). To alleviate this issue, Jing et al.
(2017a) combined a unitary parametrization with
gates, thus yielding a Gated Orthogonal Recurrent
Unit (GORU), which provides a “forgetting mech-
anism,” required by NLP tasks.

Among pre-existing RNN units, RUM is most
similar to GORU in spirit because both mod-
els transform (significantly) GRU. Note, however,
that GORU parametrizes an orthogonal operation
while RUM extracts an orthogonal operation in
the form of a rotation. In this sense, to paral-
lel our model’s implicit orthogonality to the liter-
ature, RUM is a “firmware” structure instead of
a “learnware” structure, as discussed in (Balduzzi
and Ghifary, 2016).

Associative memory modeling provides a large
variety of input encodings in a neural network
for effective pattern recognition (Kohonen, 1974;
Krotov and Hopfield, 2016). It is particularly ap-
pealing for RNNs since their memory is in short
supply. RNNs often circumvent this by using ex-
ternal memory in the form of attention mechanism
(Bahdanau et al., 2015; Hermann et al., 2015).
Another alternative are neural Turing machines
(Graves et al., 2014, 2016). In either case, this
yields increase in the size of the model and makes
training harder.

Recent advances in associative memory (Plate,
2003; Danihelka et al., 2016; Ba et al., 2016a;
Zhang and Zhou, 2017) suggest that its updates
can be learned efficiently with Backpropagation
Through Time (BPTT) (Rumelhart et al., 1986).

For example, Zhang and Zhou (2017) used
weights that are dynamically updated by the input
sequence. By treating the RNN weights as mem-
ory determined by the current input data, a larger
memory size is provided and less trainable param-
eters are required.

Note that none of the above methods used rota-
tions to create the associative memory. The nov-
elty of our model is that it exploits the simple and
fundamental multiplicative closure of rotations to
generate rotational associative memory for RNNs.
As a result, an RNN that uses our RUM units
yields state-of-the-art performance for synthetic
associative recall while using very few parameters.

3 Model

Successful RNNs require well-engineered manip-
ulations of the hidden state ht at time step t. We
approach this mathematically, considering ht as a
real vector in anNh-dimensional Euclidean space,
where Nh is the dimension of the “hidden” state
RNh . Note that there is an angle between two vec-
tors in RNh (the cosine of that angle can be cal-
culated as a normalized dot product “·”). More-
over, we can associate a unique angle to ht with
respect to some reference vector. Thus, a hidden
state can be characterized by a magnitude, i.e., L2-
norm “‖.‖”, and a phase, i.e., angle with respect to
the reference vector. Thus, if we devise a mech-
anism to generate reference vectors at any given
time step, we would enable rotating the hidden
state with respect to the generated reference.

This rethinking of RNh allows us to propose a
powerful learning representation: instead of fol-
lowing the standard way of learning to modify
the norm of ht through multiplication by gates
and self-looping (as in LSTM), we learn to rotate
the hidden state, thereby changing the phase, but
preserving the magnitude. The benefits of using
such phase-learning representation are twofold:
(i) the preserved magnitude yields stable gradi-
ents, which in turn enables really long-term mem-
ory, and (ii) there is always a sequence of rotations
that can bring the current phase to a desired target
one, thus enabling effective recall of information.

In order to achieve this, we need a phase-
learning transformation that is also differentiable.
A simple and efficient approach is to compute the
angle between two special vectors, and then to up-
date the phase of the hidden state by rotating it
with the computed angle.
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Figure 2: Model: (a) RUM’s operation R, which projects and rotates h, (b) the information pipeline in RUM.

We let the RNN generate the special vectors at
time step t (i) by linearly embedding the RNN in-
put xt ∈ RNx to an embedded input ε̃t ∈ RNh ,
and (ii) by obtaining a target memory τ t as a lin-
ear combination of the current input xt (projected
in the hidden space) and the previous history ht−1
(after a linear transformation).

The Rotation Operation. We propose a func-
tion Rotation : RNh × RNh → RNh×Nh , which
implements the above idea. Rotation takes a pair
of column vectors (a,b) and returns the rotational
matrixR from a to b. If a and b have the same ori-
entation, then R is the identity matrix; otherwise,
the two vectors form a plane span(a,b). Our op-
eration projects and rotates in that plane, leaving
everything else intact, as shown in Figure 2 (a) for
a = ε̃ and b = τ (for simplicity, we dropped the
time indices).

The computations are as follows. The angle be-
tween two vectors a and b is calculated as

θ = arccos(a · b/(‖a‖‖b‖)).
An orthonormal basis for the plane is (u,v):

u = a/‖a‖
v = (b− (u · b)u)/‖b− (u · b)u‖

We can express the matrix operation R as

[1 − uu† − vv†] + (u,v)R̃(θ)(u,v)†, (1)

where the bracketed term is the projection2 and the
second term is the 2D rotation in the plane, given
by the following matrix:

R̃(θ) =

(
cos θ − sin θ
sin θ cos θ

)

21 is the identity matrix, † is the transpose of a vec-
tor/matrix and (u,v) is the concatenation of the two vectors.

Finally, we define the rotation operation as fol-
lows: Rotation(a,b) ≡ R. Note that R is
differentiable by construction, and thus it is
backpropagation-friendly. Morover, we imple-
ment Rotation and its action on ht efficiently. The
key consideration is not to compute R explicitly.
Instead, we follow eq. (1), which can be computed
in linear memoryO(Nh). Likewise, the time com-
plexity is O(N2

h).
Associative memory. We find that, for some

sequential tasks, it is useful to exploit the multi-
plicative structure of rotations to enable associa-
tive memory. This is based on the observation that
just like the sum of two real numbers is also a real
number, the product of two rotational matrices is
another rotational matrix.3 Therefore, we use a
rotation Rt as an additional memory state that ac-
cumulates phase as follows

Rt = (Rt−1)
λRotation(ε̃t, τ t). (2)

We make the associative memory from eq. (2)
tunable through the parameter λ ∈ {0, 1}, which
serves to switch the associative memory off and
on. To the best of our knowledge, our model is the
first RNN to explore such multiplicative associa-
tive memory.

Note that even though Rt acts as an additional
memory state, there are no additional parame-
ters in RUM: the parameters are only within the
Rotation operation. As the same Rotation ap-
pears at each recursive step (2), the parameters are
shared.

3This reflects the fact that the set of orthogonal matrices
O(Nh) forms a group under the multiplication operation.



The RUM cell. Figure 2 (b) shows a sketch of
the connections in the RUM cell. RUM consists of
an update gate u ∈ RNh that has the same function
as in GRU. However, instead of a reset gate, the
model learns the memory target τ ∈ RNh . RUM
also learns to embed the input vector x ∈ RNx
into RNh to yield ε̃ ∈ RNh . Hence, Rotation en-
codes the rotation between the embedded input
and the target, which is accumulated in the asso-
ciative memory unitRt ∈ RNh×Nh (originally ini-
tialized to the identity matrix). Here, λ is a non-
negative integer that is a hyper-parameter of the
model. The orthogonal matrix Rt acts on the state
h to produce an evolved hidden state h̃. Finally,
RUM calculates the new hidden state via u, just as
in GRU. The RUM equations are given in Algo-
rithm 1. The orthogonal matrix R(ε̃t, τ ) concep-
tually takes the place of a weight kernel acting on
the hidden state in GRU.

Non-linear activation for RUM. We motivate
the choice of activations using analysis of the gra-
dient updates. Let the cost function be C. For
T steps, we compute the partial derivative via the
chain rule:

∂C

∂ht
=

∂C

∂hT

T−1∏

k=t

∂hk+1

∂hk
=

∂C

∂hT

T−1∏

k=t

D(k)W †,

where D(k) = diag{f ′(Whk−1 + Axk + b)} is
the Jacobian matrix of the point-wise non-linearity
f for a standard vanilla RNN.

For the sake of clarity, let us consider a simpli-
fied version of RUM, where W ≡ Rk is a rota-
tion matrix, and let us use spectral norm for matri-
ces. By orthogonality, we have ‖W †‖ = 1. Then,
the norm of the update ‖∂C/∂ht‖ is bounded by
‖∂C/∂hT ‖‖W †‖T−t

∏T−1
k=1 ‖D(k)‖, which sim-

plifies to ‖∂C/∂hT ‖
∏T−1
k=1 ‖D(k)‖. Hence, if the

norm of ‖D(k)‖ is strictly less than one, we would
witness vanishing gradients (for large T ), which
we aim to avoid by choosing a proper activation.

Hence, we compare four well-known activa-
tions f : ReLU, tanh, sigmoid and softsign. Fig-
ure 3 shows their derivatives. As long as some
value is positive, the ReLU derivative will be one,
and thus ‖D(k)‖ = 1. This means that ReLU is
potentially a good choice. Since RUM is closer
to GRU, which makes the analysis more compli-
cated, we conduct ablation studies on non-linear
activations and on the importance of the update
gate throughout Section 4.

-4 -2 2 4

0.2

0.6

1.

Figure 3: Derivatives of popular activations.

Algorithm 1 Rotational Unit of Memory (RUM)
Input: dimensions Nx, Nh, T ; data x ∈ RT×Nx ; type of
cell λ; norm η for time-normalization; non-linear activa-
tion function f .
Initialize: kernels W τ

xh,W
u′
xh ∈ RNx×Nh , W τ

hh,W
u′
hh ∈

RNh×Nh and W̃xh ∈ RNx×Nh ; biases bτt ,b
u′
t , b̃t ∈

RNh ; hidden state h0; orthogonal initialization for weights
with gain 1.0.
for t = 1 to T do
τ t =W τ

xhxt +W τ
hhht−1 + bτt //memory target

u′t =Wu′
xhxt +Wu′

hhht−1 + bu
′
t //update gate

ut = sigmoid(u′t) //activation of the update gate
ε̃t = W̃xhxt + b̃t //embedded input
Rt = (Rt−1)

λRotation(ε̃t, τ t) //associative memory
h̃t = f(ε̃t +Rtht−1) //hidden state evolution
h′t = ut � ht−1 + (1− ut)� h̃t //new state
ht = ηh′t/‖h′t‖ //normalization N (optional)

end for

Time normalization (optional). Sometimes h′t
(in Algorithm 1) blows up, e.g., when using ReLU
activation or for heterogeneous architectures that
use other types of units (e.g., LSTM/GRU) in ad-
dition to RUM or perform complex computations
based on attention mechanism or pointers. In such
cases, we suggest using L2-normalization of the
hidden state ht to have a fixed norm η along the
time dimension.

We call it time normalization, as we usually
feed mini-batches to the RNN during learning that
have the shape (Nb, NT ), where Nb is the size of
the batch and NT is the length of the sequence.
Empirically, fixing η to be a small number stabi-
lizes training, and we found that values centered
around η = 1.0 work well. This is an optional
component in RUM, as typically h′t does not blow
up. In our experiments, we only needed it for our
character-level language modeling, which mixes
RUM and LSTM units.



4 Experiments

Below we describe two kinds of experiments
based (i) on synthetic and (ii) on real-world tasks.
The former test the representational power of
RUMs vs. LSTMs/GRUs, while the latter test
whether RUMs also perform well for real-world
NLP problems.

4.1 Synthetic Tasks

Copying memory task (A) is a standard testbed
for the RNN’s capability for long-term mem-
ory (Hochreiter and Schmidhuber, 1997; Arjovsky
et al., 2016; Henaff et al., 2016). Here, we follow
the experimental setup in (Jing et al., 2017b).

Data. The alphabet of the input consists of sym-
bols {ai}, i ∈ {0, 1, · · · , n − 1, n, n + 1}, the
first n of which represent data for copying, and
the remaining two forming “blank” and “marker”
symbols, respectively. In our experiments, we set
n = 8 and the data for copying is the first 10 sym-
bols of the input. The RNN model is expected to
output “blank” during T = 500 delay steps and,
after the “marker” appears in the input, to output
(copy) sequentially the first 10 input symbols. The
train/test split is 50,000/500 examples.

Models. We test RNNs built using various
types of units: LSTM (Hochreiter and Schmidhu-
ber, 1997), GRU (Cho et al., 2014), uRNN (Wis-
dom et al., 2016), EURNN (Jing et al., 2017b),
GORU (Jing et al., 2017a), and RUM (ours) with
λ ∈ {0, 1} and η ∈ {1.0,N/A}. We train with
a batch size of 128 and an RMSProp with a 0.9
decay rate, and we try learning rates from {0.01,
0.001, 0.0001}. We found that LSTM and GRU
fail for all learning rates, EURNN is unstable for
large learning rates, and RUM is stable for all
learning rates. Thus, we use 0.001 for all units
except for EURNN, for which we use 0.0001.

Results. In Figure 4, we show the cross-entropy
loss for delay time T = 500. Note that LSTM
and GRU hit a predictable baseline of memoryless
strategy, equivalent to random guessing.4 We can
see that RUM improves over the baseline and con-
verges to 100% accuracy. For the explicit unitary
models, EURNN and uRNN also solve the prob-
lem in just a few steps, while GORU converges
slightly faster than RUM.

4Calculated as follows: C = (M logn)/(T + 2M),
where C is cross-entropy, T = 500 is delay time, n = 8
is the size of the alphabet, M = 10 is the length of the string
to memorize.

Figure 4: Synthetic memory copying results: shown
is the cross-entropy loss. The number in the name of
the models indicates the size of the hidden state, λ = 1
means tuning the associative memory, and η = N/A
means not using time normalization. Note that the re-
sults for GRU 100 are not visible due to overlap with
GRU 256.

Next, we study why RUM units can solve the
task, while LSTM/GRU units cannot. In Figure 4,
we also test a RUM model (called RUM′) with-
out a flexible target memory and embedded input,
i.e., the weight kernels that produce τt and ε̃t are
kept constant. We observe that the model does
not learn well (converges extremely slowly). This
means that learning to rotate the hidden state by
having control over the angles used for rotations is
indeed needed.

Controlling the norm of the hidden state is also
important. The activations of LSTM and GRU
are sigmoid and tanh, respectively, and both are
bounded. RUM uses ReLU, which allows larger
hidden states (nevertheless, note that RUM with
the bounded tanh also yields 100% accuracy). We
observe that, when we remove the normalization,
RUM converges faster compared to when using
η = 1.0. Having no time normalization means
larger spikes in the cross-entropy and increased
risk of exploding loss. EURNN and uRNN are ex-
posed to this, while RUM uses a tunable reduction
of the risk through time normalization.

We also observe the benefits of tuning the as-
sociative rotational memory. Indeed, a RUM with
λ = 1 has a smaller hidden size, Nh = 100, but it
learns much faster than a RUM with λ = 0. It is
possible that the accumulation of phase via λ = 1
enables faster really long-term memory.

Finally, we would like to note that removing the
update gate or using tanh and softsign activations
do not hurt performance.



Associative recall task (B) is another testbed
for long-term memory. We follow the settings in
(Ba et al., 2016a; Zhang and Zhou, 2017).

Data. The sequences for training are random,
and consist of pairs of letters and digits. We set
the query key to always be a letter. We fix the
size of the letter set to half the length of the se-
quence, the digits are from 0 to 9. No letter
is repeated. In particular, the RNN is fed a se-
quence of letter–digit pairs followed by the sepa-
ration indicator “??” and a query letter (key), e.g.,
“a1s2d3f4g5??d”. The RNN is supposed to output
the digit that follows the query key (“d” in this ex-
ample): it needs to find the query key and then to
output the digit that follows (“3” in this example).
The train/dev/test split is 100k/10k/20k examples.

Models. We test LSTM, GRU, GORU, FW-LN
(Ba et al., 2016a), WeiNet (Zhang and Zhou, 2017)
and RUM (λ = 1, η = 0). All the models have the
same hidden state Nh = 50 for different lengths
T . We train for 100k epochs with a batch size of
128, RMSProp as an optimizer and a learning rate
of 0.001 (selected using hyper-parameter search).

Results. Table 1 shows the results. We can see
that LSTM and GRU are unable to recall the digit
correctly. Even GORU, which learns the copying
task, fails to solve the problem. FW-LN, WeiNet
and RUM can learn the task for T = 30. For
RUM, it is necessary that λ = 1, as for λ = 0
its performance is similar to that of LSTM and
GORU. WeiNet and RUM are the only known
models that can learn the task for the challenging
50 input characters. Note that RUM yields 100%
accuracy with 40% fewer parameters.

The benefit of the associative memory is ap-
parent from the temperature map in Figure 5 (a),
where we can see that the weight kernel for the tar-
get memory has a clear diagonal activation. This
suggests that the model learns how to rotate the
hidden state in the Euclidean space by observing
the sequence encoded in the hidden state. Note
that none of our baseline models exhibits such a
pattern for the weight kernels.

Figure 5 (b) shows the evolution of the rota-
tional behavior during the 53 time steps for a
model that does not learn the task. We can see that
cos θ is small and biased towards 0.2. Figure 5 (c)
shows the evolution of a model with associative
memory (λ = 1) that does learn the task. Note
that these distributions have a wider range that is
more uniform.

Model
Acc.(%)

Prms.
T = 30/50.

GRU (ours) 21.5/17.6 14k
GORU (ours) 21.8/18.9 13k
EURNN (ours) 24.5/18.5 4k
LSTM (ours) 25.6/20.5 17k
FW-LN (Ba et al., 2016a) 100.0/20.8 9k
WeiNet (Zhang and Zhou, 2017) 100.0/100.0 22k
RUM λ = 0 η = N/A (ours) 25.0/18.5 13k
RUM λ = 1 η = 1.0 (ours) 100.0/83.7 13k
RUM λ = 1 η = N/A (ours) 100.0/100.0 13k

Table 1: Associative recall results: T is the input
length. Note that line 8 still learns the task completely
for T = 50, but it needs more than 100k training steps.
Moreover, varying the activations or removing the up-
date gate does not change the result in the last line.
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Model BPC # Parameters
Zoneout LSTM (Krueger et al. (2016)) 1.27 –
RUM 2000 (ours) 1.28 8.9M
2 ⇥ RUM 1500 (ours) 1.26 16.4M
HM-LSTM (Chung et al. (2016)) 1.24 –
HyperLSTM (Ha et al. (2016)) 1.219 14.4M
NASCell (Zoph & V. Le (2016)) 1.214 16.3M
FS-LSTM-4 (Mujika et al. (2017)) 1.193 6.5M
FS-LSTM-2 (Mujika et al. (2017)) 1.190 7.2M
FS-RUM-2 (ours) 1.189 11.2M

Table 3: With FS-RUM-2 we achieve the state-of-the-art test result on the Penn Treebank task.
Additionally, a non-extensive grid search for vanilla RNN models yields comparable results to that
of Zoneout LSTM.

each element on the diagonal activates a distinct neuron. Therefore, it seems that RUM utilizes
the capacity of the hidden state almost completely. For this reason, we might consider RUM as an
architecture that is close to the theoretical optimum of the representational power of RNN models.

Moreover, the diagonal structure is not task specific. For example, in Figure 3 (b) we observe a
particular W

(2)
hh for the target ⌧ on the Penn Treebank task. The way we interpret the meaning

of the diagonal structure, combined with the off-diagonal activations, is that probably they encode
grammar and vocabulary, as well as the links between various components of language.
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Figure 3: The kernel generating the target memory for RUM is following a diagonal activation
pattern, which signifies the sequential learning of the model. (a) A temperature map of the values
of the variables when the model is learned. The task is Associative Recall, T = 50, and the model is
RUM, � = 1, with Nh = 50 and without time normalization. (b) An interpretation of the function of
the diagonal and off-diagonal activations of RUM’s Whh kernel on NLP tasks. The task is Character
Level Penn Treebank and the model is � = 0 RUM, Nh = 2000, ⌘ = 1.0. See section E for
additional examples.

5.2 THEORETICAL ANALYSIS

It is natural to view the Rotational Unit of Memory and many other approaches using orthogonal
matrices to fall into the category of phase-encoding architectures: R = R(✓), where ✓ is a phase
information matrix. For instance, we can parameterize any orthogonal matrix according to the Effi-
cient Unitary Neural Networks (EUNN, Jing et al. (2017b)) architecture: R =

QN
i=0 U0(✓

i), where
U0 is a block diagonal matrix containing N/2 numbers of 2-by-2 rotations. The component ✓i is
an one-by-(N/2) parameter vector. Therefore, the rotational memory equation in our model can be
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Figure 5: Associative recall study: (a) temperature
map for the weight kernels’ values for a trained model;
(b,c) training evolution of the distribution of cos θ
throughout the sequence of T + 3 = 53 time-steps
(53 numbers in each histogram). For each time step
t, 1 ≤ t ≤ T +3, we average the values of cos θ across
the minibatch dimension and we show the mean.

Also, there are one or two cos θ instances close to
1.0 per distribution, i.e., the angle is close to zero
and the hidden state is rotated only marginally.
The distributions in Figure 5 (c) yield more var-
ied representations.

4.2 Real-world NLP Tasks

Question answering (C) is typically done using
neural networks with external memory, but here
we use a vanilla RNN with and without attention.

Data. We use the bAbI Question Answer-
ing dataset (Weston et al., 2016), which con-
sists of 20 subtasks, with 9k/1k/1k examples for
train/dev/test per subtask. We train a separate
model for each subtask. We tokenize the text (at
the word and at the sentence level), and then we
concatenate the story and the question.



Model Acc.(%)
Word Level

1 LSTM (Weston et al., 2016) 49.2
2 uRNN (ours) 51.6
3 EURNN (ours) 52.9
4 LSTM (ours) 56.0
5 GRU (ours) 58.2
6 GORU (Jing et al., 2017a) 60.4
7 RUM λ = 0 (ours) 73.2
8 DNC (Graves et al., 2016) 96.2

Sentence Level
9 EUNN/attnEUNN (ours) 66.7/69.5

10 LSTM/attnLSTM (ours) 67.2/80.1
11 GRU/attnGRU (ours) 70.4/77.3
12 GORU/attnGORU (ours) 71.3/76.4
13 RUM/attnRUM λ = 0 (ours) 75.1/74.3
14 RUM/attnRUM λ = 1 (ours) 79.0/80.1
15 RUM/attnRUM λ = 0 w/ tanh (ours) 70.5/72.9
16 MemN2N (Sukhbaatar et al., 2015) 95.8
17 GMemN2N (Perez and Liu, 2017) 96.3
18 DMN+ (Xiong et al., 2016) 97.2
19 EntNet (Henaff et al., 2017) 99.5
20 QRN (Seo et al., 2017) 99.7

Table 2: Question answering results: accuracy aver-
aged over the 20 bAbI tasks. Using tanh is worse than
ReLU (line 13 vs. 15). RUM 150 λ = 0 without an
update gate drops by 1.7% compared to line 13.

For the word level, we embed the words into
dense vectors, and we feed them into the RNN.
Hence, the input sequence can be labeled as
{x(s)

1 , . . . ,x
(s)
n ,x

(q)
1 , . . . ,x

(q)
m }, where the story

has n words and the question has m words.
For the sentence level, we generate sen-

tence embeddings by averaging word embeddings.
Thus, the input sequence for a story with n sen-
tences is {x(s)

1 , . . . ,x
(s)
n ,x(q)}.

Attention mechanism for sentence level. We use
simple dot-product attention (Luong et al., 2015):
{pt}0≤t≤n := softmax({h(q) · h(s)

t }0≤t≤n). The
context vector c :=

∑n
t=0 pth

(s)
t is then passed,

together with the query vector, to a dense layer.
Models. We compare uRNN, EURNN, LSTM,

GRU, GORU and RUM (with η = N/A in all
experiments). The RNN model outputs the pre-
diction at the end of the question through a soft-
max layer. We use a batch size of 32 for all 20
subtasks. We train the model using Adam opti-
mizer with a learning rate of 0.001 (Kingma and
Ba, 2015). All embeddings (word and sentence)
are 64-dimensional. For each subset, we train un-
til convergence on the dev set, without other regu-
larization. For testing, we report the average accu-
racy over the 20 subtasks.

Results. Table 2 shows the average accuracy
on the 20 bAbI tasks. Without attention, RUM
outperforms LSTM/GRU and all unitary baseline
models by a sizable margin both at the word and at
the sentence level. Moreover, RUM without atten-
tion (line 14) outperforms all models except for
attnLSTM. Furthermore, LSTM and GRU bene-
fit the most from adding attention (lines 10–11),
while the phase-coded models (lines 9, 12–15) get
only a small boost in performance or even a de-
crease, e.g., in line 13. While RUM (line 14)
shares the best accuracy with LSTM (line 10),
we hypothesize that a “phase-inspired” attention
might further boost RUM’s performance.5

Language modeling [character-level] (D) is
an important testbed for RNNs (Graves, 2013).

Data. The Penn Treebank (PTB) corpus is a
collection of articles from The Wall Street Journal
(Marcus et al., 1993), with a vocabulary of 10k
words (using 50 different characters). We use a
train/dev/test split of 5.1M/400k/450k tokens, and
we replace rare words with <unk>. We feed 150
tokens at a time, and we use a batch size of 128.

Models. We incorporate RUM into a recent
high-level model: Fast-Slow RNN (FS-RNN)
(Mujika et al., 2017). The FS-RNN-k architec-
ture consists of two hierarchical layers: one of
them is a “fast” layer that connects k RNN cells
F1, . . . , Fk in series; the other is a “slow” layer
that consists of a single RNN cell S. The organi-
zation is roughly as follows: F1 receives the input
from the mini-batch and feeds its state into S, S
feeds its state into F2, and so on; finally, the output
of Fk is a probability distribution over characters.
FS-RUM-2 uses fast cells (all LSTM) with hidden
size of 700 and a slow cell (RUM) with a hidden
state of size 1000, time normalization η = 1.0, and
λ = 0. We also tried to use associative memory
λ = 1 or to avoid time normalization, but we en-
countered exploding loss at early training stages.
We optimized all hyper-parameters on the dev set.

Additionally, we tested FS-EURNN-2, i.e., the
slow cell is EURNN with a hidden size of 2000,
and FS-GORU-2 with a slow cell GORU with a
hidden size of 800 (everything else remains as for
FS-RUM-2). As the learning phases are periodic,
there is no easy regularization for FS-EURNN-2
or FS-GORU-2.

5 RUM’s associative memory, equation (2), is similar to
attention because it accumulates phase, i.e., forms a context.
We plan to investigate phase-coded attention in future work.



Model BPC Prms.
1 RUM 1400 w/o upd. gate. (ours) 1.326 2.4M
2 RUM 1000 (ours) 1.302 2.4M
3 RUM 1000 w/ tanh (ours) 1.299 2.4M
4 LSTM (Krueger et al., 2017) 1.270 –
5 LSTM 1000 (ours) 1.240 4.5M
6 RUM 1400 (ours) 1.284 4.5M
7 RUM 2000 (ours) 1.280 8.9M
8 2 × RUM 1500 (ours) 1.260 16.4M
9 FS-EURNN-2’ (ours) 1.662 14.3M

10 FS-GORU-2’ (ours) 1.559 17.0M
11 HM-LSTM (Chung et al., 2017) 1.240 –
12 HyperLSTM (Ha et al., 2016) 1.219 14.4M
13 NASCell (Zoph and V. Le, 2017) 1.214 16.3M
14 FS-LSTM-4 (Mujika et al., 2017) 1.193 6.5M
15 FS-LSTM-2 (Mujika et al., 2017) 1.190 7.2M
16 FS-RUM-2 (ours) 1.189 11.2M
17 6lyr-QRNN (Merity et al., 2018) 1.187 13.8M
18 3lyr-LSTM (Merity et al., 2018) 1.175 13.8M

Table 3: Character-level language modeling results:
BPC score on the PTB test split. Using tanh is slightly
better than ReLU (lines 2–3). Removing the update
gate in line 1 is worse than line 2. Phase-inspired regu-
larization may improve lines 1–3, 6–8, 9–10, and 16.

For FS-RNN, we use the hyper-parameter values
suggested in (Mujika et al., 2017). We further use
layer normalization (Ba et al., 2016b) on all states,
on the LSTM gates, on the RUM update gate,
and on the target memory. We also apply zone-
out (Krueger et al., 2017) to the recurrent connec-
tions, as well as dropout (Srivastava et al., 2014).
We embed each character into a 128-dimensional
space (without pre-training).

For training, we use the Adam optimizer with
a learning rate of 0.002, we decay the learning
rate for the last few training epochs, and we ap-
ply gradient clipping with a maximal norm of the
gradients equal to 1.0. Finally, we pass the output
through a softmax layer.

For testing, we report bits-per-character (BPC)
loss on the test dataset, which is the cross-entropy
loss but with a binary logarithm.

Our best FS-RUM-2 uses decaying learning
rate: 180 epochs with a learning rate of 0.002, then
60 epochs with 0.0001, and finally 120 epochs
with 0.00001.

We also test a RUM with η = 1.0, and a two-
layer RUM with η = 0.3. The cell zoneout/hidden
zoneout/dropout probability is 0.5/0.9/0.35 for FS-
RUM-2, and 0.5/0.1/0.65 for the vanilla versions.
We train for 100 epochs with a 0.002 learning
rate. These values were suggested by Mujika et al.
(2017), who used LSTM cells.

Results. In Table 3, we report the BPC loss
for character-level language modeling on PTB.
For the test split, FS-RUM-2 reduces the BPC
for Fast-Slow models by 0.001 points absolute.
Moreover, we achieved a decrease of 0.002 BPC
points for the validation split using an FS-RUM-2
model with a hidden size of 800 for the slow cell
(RUM) and a hidden size of 1100 for the fast cells
(LSTM). Our results support a conjecture from the
Conclusion section of (Mujika et al., 2017), which
states that models with long-term memory, when
used as the slow cell, may enhance performance.

Text summarization (E) is the task of reduc-
ing long pieces of text to short summaries with-
out losing much information. It is one of the most
challenging tasks in NLP (Nenkova and McKe-
own, 2011), with a number of applications rang-
ing from question answering to journalism (Tat-
alović, 2018). Text summarization can be abstrac-
tive (Nallapati et al., 2016), extractive (Nallapati
et al., 2017), or hybrid (See et al., 2017). Ad-
vances in encoder-decoder/seq2seq models (Cho
et al., 2014; Sutskever et al., 2014) established
models based on RNNs as powerful tools for text
summarization. Having accumulated knowledge
from the ablation and the preparation tasks, we test
RUM on this hard real-world NLP task.

Data. We follow the setup in (See et al., 2017)
and we use the CNN/ Daily Mail corpus (Hermann
et al., 2015; Nallapati et al., 2016), which consists
of news stories with reference summaries. On av-
erage, there are 781 tokens per story and 56 tokens
per summary. The train/dev/test datasets contain
287,226/13,368/11,490 text–summary pairs.

We further experimented with a new dataset,
which we crawled from the Science Daily website,
iterating certain patterns of date/time. We success-
fully extracted 60,900 webpages, each containing
a public story about a recent scientific paper. We
extracted the main content, a short summary, and
a title from the HTML page using Beautiful Soup.
The input story length is 488.42±219.47, the tar-
get summary length is 45.21±18.60, and the title
length is 9.35±2.84. In our experiments, we set
the vocabulary size to 50k.

We defined four tasks on this data: (i) s2s, story
to summary, (ii) sh2s, shuffled story to summary
(we put the paragraphs in the story in a random
order); (iii) s2t, story to title; and (iv) oods2s, out-
of-domain testing for s2s (i.e., training on CNN /
Daily Mail and testing on Science Daily).



Models. We use a pointer-generator network
(See et al., 2017), which is a combination of a
seq2seq model (Nallapati et al., 2016) with atten-
tion (Bahdanau et al., 2015) and a pointer net-
work (Vinyals et al., 2015). We believe that
the pointer-generator network architecture to be a
good testbed for experiments with a new RNN unit
because it enables both abstractive and extractive
summarization.

We adopt the model from (See et al., 2017)
as our LEAD baseline. This model uses a bi-
directional LSTM encoder (400 steps) with at-
tention distribution and an LSTM decoder (100
steps for training and 120 steps for testing),
with all hidden states being 256-dimensional, and
128-dimensional word embeddings trained from
scratch during training. For training, we use the
cross-entropy loss for the seq2seq model. For
evaluation, we use ROUGE (Lin and Hovy, 2003).
We also allow the coverage mechanism proposed
in the original paper, which penalizes repeti-
tions and improves the quality of the summaries
(marked as “cov.” in Table 4). Following the orig-
inal paper, we train LEAD for 270k iterations and
we turn on the coverage for about 3k iterations at
the end to get LEAD cov. We use an Adagrad opti-
mizer with a learning rate of 0.15, an accumulator
value of 0.1, and a batch size of 16. For decoding,
we use a beam of size 4.

The only component in LEAD that our pro-
posed models change is the type of the RNN unit
for the encoder/decoder. Namely, encRUM is a
LEAD with a bi-directional RUM as an encoder
(but with a bi-LSTM decoder), decRUM is LEAD
with a bi-directional RUM as a decoder (but with
a bi-LSTM encoder), and allRUM is LEAD with
all LSTM units replaced by RUM ones. We train
these models as LEAD, by minimizing the val-
idation cross-entropy. We found that encRUM
and allRUM take about 100k training steps to
converge, while decRUM takes about 270k steps.
Then, we turn on coverage training, as advised by
See et al. (2017), and we train for a few thousand
steps {2k,3k,4k,5k,8k}. The best ROUGE on dev
was achieved for 2k steps, and this is what we
used ultimately. We did not use time normaliza-
tion as training was stable without it. We used the
same hidden sizes for the LSTM, the RUM, and
the mixed models. For the size of the hidden units,
we tried {256, 360, 400, 512} on the dev set, and
we found that 256 worked best overall.

Model
ROUGE

1 2 L
1 LEAD (ours) 36.89 15.92 33.65
2 decRUM 256 (ours) 37.07 16.17 34.07
3 allRUM 360 cov. (ours) 35.01 14.69 32.02
4 encRUM 360 cov. (ours) 36.34 15.24 33.16
5 decRUM 360 cov. (ours) 37.44 16.17 34.23
6 LEAD cov. (ours) 39.11 16.86 35.86
7 decRUM 256 cov. (ours) 39.54 16.92 36.21
8 (Nallapati et al., 2016) 35.46 13.30 32.65
9 (Nallapati et al., 2017) 39.60 16.20 35.30

10 (See et al., 2017) 36.44 15.66 33.42
11 (See et al., 2017) cov. 39.53 17.28 36.38
12 (Narayan et al., 2018) 40.0 18.20 36.60
13 (Celikyilmaz et al., 2018) 41.69 19.47 37.92
14 (Chen and Bansal, 2018) 41.20 18.18 38.79

L/dR
ROUGE (on Science Daily)

1 2 L
15 s2s 68.83/65.56 61.43/57.24 65.75/62.03
16 sh2s 56.63/56.13 45.24/44.50 51.75/51.19
17 s2t 27.33/27.18 10.33/10.56 24.81/24.97
18 oods2s 32.91/37.01 16.67/22.36 26.75/31.11

Table 4: Text summarization results: Shown are
ROUGE F-{1,2,L} scores on the test split for the CNN
/ Daily Mail and the Science Daily datasets. Some
settings are different from ours: lines 8–9 show re-
sults when training and testing on an anonymized
dataset, while lines 12–14 use reinforcement learn-
ing. The ROUGE scores have a 95% confidence in-
terval ranging within ±0.25 points absolute. For lines
2 and 7, the maximum decoder steps during testing is
100. In lines 15-18, L/dR stands for LEAD/decRUM.
Replacing ReLU with tanh or removing the update
gate in decRUM line 17 yields a drop in ROUGE of
0.01/0.09/0.25 and 0.36/0.39/0.42 points absolute, re-
spectively.

Results. Table 4 shows ROUGE scores for the
CNN / Daily Mail and the Science Daily test splits.
We can see that RUM can easily replace LSTM in
the pointer-generator network. We found that the
best place to use RUM is in the decoder of the
seq2seq model, since decRUM is better than en-
cRUM and allRUM. Overall, we obtained the best
results with decRUM 256 (lines 2 and 7), and we
observed slight improvements for some ROUGE
variants over previous work, i.e., with respect to
lines 10–11.

We further trained decRUM with coverage for
about 2,000 additional steps, which yielded 0.01
points of increase for ROUGE 1 (but with reduced
ROUGE 2/L). We can conclude that here, as in
the language modeling study (D), a combination
of LSTM and RUM is better then using LSTM-
only or RUM-only seq2seq models.



We conjecture that using RUM in the decoder is
better since the encoder already has an attention
mechanism and thus does not need much long-
term memory, and would better focus on a more
local context (as in LSTM). However, long-term
memory is crucial for the decoder as it has to gen-
erate fluent output, and the attention mechanism
cannot help it (i.e., better to use RUM). This is
in line with our attention experiments on question
answering. In future work, we plan to investigate
combinations of LSTM and RUM units in more
detail to identify optimal phase-coded attention.

Incorporating RUM into the seq2seq model
yields larger gradients, compatible with stable
training. Figure 6 (a) shows the global norm
of the gradients for our baseline models. Be-
cause of the tanh activation, LSTM’s gradients
hit the 1.0 baseline even though gradient clip-
ping is 2.0. All RUM-based models have larger
global norm. decRUM 360 sustains a slightly
higher norm than LEAD, which might be benefi-
cial. Panel (b), a consequence of (a), demonstrates
that the RUM decoder sustains hidden states of
higher norm throughout training. Panel (c) shows
the contribution of the output at each encoder step
to the gradient updates of the model. We ob-
serve that an LSTM encoder (in LEAD and de-
cRUM) yields slightly higher gradient updates to
the model, which is in line with our conjecture that
it is better to use an LSTM encoder. Finally, panel
(d) shows the gradient updates at each decoder
step. While the overall performance of LEAD and
decRUM is similar, we note that the last few gra-
dient updates from a RUM decoder are zero, while
they are slightly above zero for LSTM. This hap-
pens because the target summaries for a minibatch
are actually shorter than 100 tokens. Here, RUM
exhibits an interesting property: it identifies that
the target summary has ended, and thus for the
subsequent extra steps, our model stops the gra-
dients from updating the weights. An LSTM de-
coder keeps updating during the extra steps, which
might indicate that it does not identify the end of
the target summary properly.

We also compare our best decRUM 256 model
to LEAD on the Science Daily data (lines 15–
18). In lines 15–17, we retrain the models from
scratch. We can see that LEAD has clear advan-
tage on the easiest task (line 15), which generally
requires copying the first few sentences of the Sci-
ence Daily article.

(a) (b)

(c) (d)

Figure 6: Text summarization study on CNN/ Daily
Mail. (a) Global norm of the gradients over time;
(b) Norm of the last hidden state over time; (c) En-
coder gradients of the cost wrt the bi-directional out-
put (400 encoder steps); (d) Decoder gradients of the
cost wrt the decoder output (100 decoder steps). Note
that (c,d) are evaluated upon convergence, at a specific
batch, and the norms for each time step are averaged
across the batch and the hidden dimension altogether.

In line 16, this advantage decreases, as shuffling
the paragraphs makes the task harder. We further
observe that our RUM-based model demonstrates
better performance on ROUGE F-2/L in line 17,
where the task is highly abstractive.

Out-of-domain performance. In line 18, de-
cRUM 256 and LEAD are pretrained on CNN /
Daily Mail (models from lines 1-2), and our RUM-
based model shows clear advantage on all ROUGE
metrics. We also observe examples that are better
than the ones coming from LEAD (see for exam-
ple the story6 in Figure 1). We hypothesize that
RUM is better on out-of-domain data due to its as-
sociative nature, as can be seen in eq. (2): at in-
ference, the weight matrix updates for the hidden
state depend explicitly on the current input.

Automating Science Journalism. We further
test decRUM 256 and LEAD on the challenging
task of producing popular summaries for research
articles. The abundance of such articles online and
the popular coverage of many of them, e.g., on
Science Daily, provides an opportunity to develop
models for automating science journalism.

6http://www.sciencedaily.com/releases/
2017/07/170724142035.htm

http://www.sciencedaily.com/releases/2017/07/170724142035.htm
http://www.sciencedaily.com/releases/2017/07/170724142035.htm


The only directly related work7 is that of Vadapalli
et al. (2018) who used research papers with cor-
responding popular style blog posts from Science
Daily and phys.org, and aimed at generating the
blog title. In their work, (i) they fed the paper title
and its abstract into a heuristic function to extract
relevant information, then (ii) they fed the output
of this function into a pointer-generator network to
produce a candidate title for the blog post.

While we also use Science Daily and pointer-
generator networks, we differ from the above work
in a number of aspects. First, we focus on gener-
ating highlights, which are longer, more informa-
tive, and more complex than titles. Moreover, we
feed the model a richer input, which includes not
only the title and the abstract, but also the full text
of the research paper.8 Finally, we skip (i), and in
(ii) we encode for 1,000 steps (i.e., input words)
and we decode for 100 steps. We observed that
reading the first 1,000 words from the research pa-
per is generally enough to generate a meaningful
Science Daily-style highlight. Overall, we encode
much more content from the research paper and
we generate much longer highlights. To the best
of our knowledge, our model is the only successful
one in the domain of automatic science journalism
that takes such a long input.

Figure 7 shows some highlights generated by
our models, trained for 35k steps for decRUM and
for 50k steps for LEAD. The highlights are gram-
matical, abstractive and follow the Science Daily-
style of reporting. The pointer-generator frame-
work also allows for copying scientific terminol-
ogy, which allows it to handle simultaneously do-
mains ranging from Computer Science, to Physics,
and Medicine. Interestingly, the words cancer and
diseases are not mentioned in the research paper’s
title or abstract, not even on the entire first page;
yet, our models manage to extract them. See a
demo and more examples in the link at footnote 1.

7Other summarization work preserved the original scien-
tific style (Teufel and Moens, 2002; Nikolov et al., 2018).

8As the full text for research papers is typically only avail-
able in PDF format (sometimes also in HTML and/or XML),
it is generally hard to convert to text format. Thus, we focus
on publications by just a few well-known publishers, which
cover a sizable proportion of the research papers discussed in
Science Daily, and for which we developed parsers: Amer-
ican Association for the Advancement of Science (AAAS),
Elsevier, Public Library of Science (PLOS), Proceedings of
the National Academy of Sciences (PNAS), Springer and Wi-
ley. Ultimately, we ended up with 50,308 full text articles,
each paired with a corresponding Science Daily blog post.

Science Daily reference Researchers are collecting
and harvesting enzymes while maintaining the
enzyme's bioactivity. The new model system may
impact cancer research.

LEAD generated highlight Scientists have
developed a new method that could make it
possible to develop drugs and vaccines. The new
method could be used to develop new drugs to
treat cancer and other diseases such as cancer.

decRUM generated highlight Researchers have
developed a method that can be used to predict
the isolation of nanoparticles in the presence of a
complex mixture. The method, which uses
nanoparticles to map the enzyme, can be used to
detect and monitor enzymes, which can be used to
treat metabolic diseases such as cancer.

Figure 7: Science Daily-style highlights for
the research paper with DOI 10.1002/smll.
201200013.

5 Discussion

RUM vs. GORU. Here, we study the energy
landscape of the loss function in order to give
some intuition about why RUM’s choice of ro-
tation is more appealing than what was used in
previous phase-coded models. For simplicity, we
only compare to GORU (Jing et al., 2017a) be-
cause GORU’s gated mechanism is most similar
to that of RUM, and its orthogonal parametriza-
tion, given by (Clements et al., 2016), is similar to
that for the other orthogonal models in Section 2.
Given a batch B = {bi}i, weights W = {wj}j ,
and a model F , the loss L(W,B) is defined as∑

j F (W, bj).

In GORU, the weights are defined to be angles
of rotations, and thus the summand is F (W, bj) ≡
GORU(. . . , cos(wi), sin(wi), . . . , bj). The argu-
ments wi of the trigonometric functions are inde-
pendent of the batch element bj , and all summands
are in phase. Thus, the more trigonometric func-
tions appear in F (W, bj), the more local minima
we expect to observe in L.

In contrast, for RUM we can write F (W, bj) ≡
RUM(. . . , cos(g(wi, bj)), sin(g(wi, bj)), . . . , bj),
where g is the arccos function that was used
in defining the operation Rotation in Section 3.
Because g depends on the input bj , the summands
F (W, bj) are generally out of phase. As a result,
L will not be close to periodic, which reduces the
risk of falling into local minima.

10.1002/smll.201200013
10.1002/smll.201200013
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Figure 8: Energy landscape visualization for our
best RUM (a,b) and GORU (c,d) models on associa-
tive recall. The first batch from the training split is
fixed. The weight vectors w1,w2,w∗,wδ,wν are ran-
domly chosen instances of the weights used for phase-
coding. Subfigures (a) and (c) show a linear interpo-
lation by varying α, while (b) and (d) visualize a two-
dimensional landscape by varying α and β. All other
weights are fixed, as they do not appear in the rotations.

We test our intuition by comparing the energy
landscapes of RUM and GORU in Figure 8, fol-
lowing techniques similar to those in (Li et al.,
2018). For each model, we vary the weights in
the orthogonal transformations: the Rotation op-
eration for RUM, and the phase-coded kernel in
GORU. Subfigures (a) and (c) show a 1D slice of
the energy landscape. Note that (a) has less local
minima than (c), which is also seen on subfigures
(b) and (d) for a 2D slice of the energy landscape.

Note of caution: We should be careful when
using long-term memory RNN units if they are
embedded in more complex networks (not just
vanilla RNNs), such as stacked RNNs or seq2seq
models with attention: since such networks use
unbounded activations (such as ReLU), the gradi-
ents could blow up in training. This is despite the
unitary mechanism that stabilizes the vanilla RNN
units. Along with the unitary models, RUM is also
susceptible to blow ups (as LSTM/GRU are), but
it has a tunable mechanism solving this problem:
time normalization.

We end this section with Table 5, which lists the
best ingredients for successful RUM models.

Task Upd. Gate u Best Activations f λ η

(A) not needed ReLU, tanh, sigm. any N/A
(B) not needed any 1 N/A
(C) necessary ReLU 1 N/A
(D) necessary ReLU, tanh 0 1.0
(E) necessary ReLU 0 N/A

Table 5: RUM modeling ingredients: tasks (A-E).

6 Conclusion and Future Work

We have proposed a representation unit for RNNs
that combines properties of unitary learning and
associative memory and enables really long-term
memory modeling. We have further demonstrated
that our model outperforms conventional RNNs on
synthetic and on some real-world NLP tasks.

In future work, we plan to expand the represen-
tational power of our model by allowing λ in eq.
(2) to be not only zero or one, but any real num-
ber.9 Second, we speculate that since our rota-
tional matrix is a function of the RNN input (rather
than being fixed after training, as in LSTM/GRU),
RUM has a lot of potential for transfer learning.
Finally, we would like to explore novel dataflows
for RNN accelerators, which can run RUM effi-
ciently.
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